Package: fmbasics (via r-universe)

June 19, 2024
Type Package
Title Financial Market Building Blocks
Version 0.3.99

Description Implements basic financial market objects like currencies,
currency pairs, interest rates and interest rate indices. You
will be able to use Benchmark instances of these objects which
have been defined using their most common conventions or those
defined by International Swap Dealer Association (ISDA,
<https://www.isda.org>) legal documentation.

License GPL-2

URL https://github.com/imanuelcostigan/fmbasics,

https://imanuelcostigan.github.io/fmbasics/

BugReports https://github.com/imanuelcostigan/fmbasics/issues

Imports assertthat, fmdates (>= 0.1.2), lubridate (>= 1.6.0), methods,
readr, stats, tibble, utils, tidyr, credule

Suggests covr, knitr, rmarkdown, testthat

VignetteBuilder knitr

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 6.1.1

Repository https://imanuelcostigan.r-universe.dev
RemoteUrl https://github.com/imanuelcostigan/fmbasics
RemoteRef HEAD

RemoteSha f9a79f0ce27083fee62965b60a9d4667aef0a5f1

https://www.isda.org
https://github.com/imanuelcostigan/fmbasics
https://imanuelcostigan.github.io/fmbasics/
https://github.com/imanuelcostigan/fmbasics/issues

2 Contents

Contents
as_DiscountFactor 3
as_InterestRate L e 4
as_SurvivalProbabilities e 5
as_SurvivalProbabilities.CDSCurve 5
as_tibble.CreditCurve e e 6
as_tibble.ZeroCurve e e 7
as_ZeroHazardRate 8
build_vol_quotes e e e e 9
build_vol_surface 9
build_zero_curve 10
CashFlow e e e e e 10
CashIndex e e e 11
CDSCUIVE o e e e e e e e e e 12
CDSMarkitSpec o o e e e e e 13
CDSSingleNameSpec e 13
CDSSpec . . . o o e 14
CreditCurve e 15
CUITENCY .« o o v e e e e e e e e 16
CurrencyConstruCtors v v vt e e e e e e e e e e e e 17
CurrencyPair e 18
CurrencyPairConstructors L e e e 18
CurrencyPairMethods Lo 19
DiscountFactor e 21
DiscountFactor-operators 22
fmbasics e e e 22
IborIndex e e e 23
iborindices e e e e e e e e 24
indexcheckers e e e e e e 25
indexshifters e e e 26
InterestRate e 27
InterestRate-operators 27
interpolate L e 28
interpolate.CreditCurve L 29
interpolate.VolSurface 30
interpolate.ZeroCurve e e e 31
interpolate_dfs.CreditCurve L 31
interpolate_zeros.CreditCurve e 32
Interpolation L 33
is.CashFlow e 34
1S.CDSCurve e e e e e 35
1S.CDSSpec e e 36
1.CreditCurve e e e e e e e e e e 36
ISSCUITENCY o o o e e e e e 37
is.CurrencyPairo 37
is.DiscountFactor 38

isnterestRate e 38

as_DiscountFactor 3

is.Interpolation e e e 39
is.MultiCurrencyMoney e 39
is.SingleCurrencyMoneyo o 40
is.SurvivalProbabilities 41
1ISVOIQUOLES e e e e e e e 41
is.VolSurface e e e 42
1S.ZerOCUIVE . . . L o i e e e e e e e e e 42
is.ZeroHazardRate 43
iso.CurrencyPair 43
is_valid_compounding 44
MultiCurrencyMoney o v vt e e e e e e 45
oniaindiCes e e e e e e e e e e e e 46
SingleCurrencyMoney 47
SurvivalProbabilities L. 48
SurvivalProbabilities-operators e e e e 48
VolQuotes e e e e 49
VolSurface e e 50
ZeroCUIVE o v it e e e e e e e e e e e e e e 51
ZeroHazardRate e 52
ZeroHazardRate-operators e 53
Index 54
as_DiscountFactor Coerce to DiscountFactor
Description

You can coerce objects to the DiscountFactor class using this method.

Usage

as_DiscountFactor(x, ...)

S3 method for class 'InterestRate'
as_DiscountFactor(x, di1, d2, ...)

Arguments
X object to coerce
other parameters passed to methods
di a Date vector containing the as of date
d2 a Date vector containing the date to which the discount factor applies
Value

a DiscountFactor object

4 as_InterestRate

Examples

library("lubridate”)
as_DiscountFactor(InterestRate(c(@.04, 0.05), c(2, 4), 'act/365'),
ymd(20140101), ymd(20150101))

as_InterestRate Coerce to InterestRate

Description

You can coerce objects to the InterestRate class using this method.

Usage

as_InterestRate(x, ...)

S3 method for class 'DiscountFactor’
as_InterestRate(x, compounding, day_basis, ...)

S3 method for class 'InterestRate'
as_InterestRate(x, compounding = NULL,
day_basis = NULL, ...)

Arguments

X object to coerce
other parameters passed to methods
compounding a numeric vector representing the compounding frequency.

day_basis a character vector representing the day basis associated with the interest rate
(see fmdates: :year_frac())

Value

an InterestRate object

Examples

library("lubridate”)

as_InterestRate(DiscountFactor(0.95, ymd(20130101), ymd(20140101)),
compounding = 2, day_basis = "act/365")

as_InterestRate(InterestRate(c(0.04, 0.05), c(2, 4), 'act/365'),
compounding = 4, day_basis = 'act/365")

as_SurvivalProbabilities 5

as_SurvivalProbabilities
Coerce to InterestRate

Description

You can coerce objects to the SurvivalProbabilities class using this method.

Usage

as_SurvivalProbabilities(x, ...)

S3 method for class 'ZeroHazardRate'

as_SurvivalProbabilities(x, d1, d2, ...)
Arguments
X object to coerce

other parameters passed to methods

di a Date vector containing the as of date
d2 a Date vector containing the date to which the survival probability applies
Examples
curve_specs <- CDSMarkitSpec(
rating = "AAA",
region = "Japan”,
sector = "Utilities”
)
HR <- ZeroHazardRate(values = c(@.04, 0.05), compounding = c(2, 4),
day_basis = 'act/365', specs = curve_specs)

as_SurvivalProbabilities(HR, lubridate::ymd(20160202), lubridate::ymd(20160302))

as_SurvivalProbabilities.CDSCurve
Bootstraps Survival Probabilitie from a CDS curve Using
Rhrefhitps://www.rdocumentation.org/packages/credule/versions/0.1.3credule
package. The output of bootstrapping is a vector of cumulative sur-
vival probabilities.

Description

Bootstraps Survival Probabilitie from a CDS curve Using credule package. The output of bootstrap-
ping is a vector of cumulative survival probabilities.

https://www.rdocumentation.org/packages/credule/versions/0.1.3

6 as_tibble.CreditCurve

Usage

S3 method for class 'CDSCurve'
as_SurvivalProbabilities(x, zero_curve,

num_timesteps_pa = 12, accrued_premium = TRUE, ...)
Arguments
X An object of type CDSCurve
zero_curve An object of type ZeroCurve

num_timesteps_pa
It represents the number of timesteps used to perform the numerical integral
required while computing the default leg value. It is shown that a monthly dis-
cretisation usually gives a good approximation (Ref. Valuation of Credit Default
Swaps, Dominic O Kane and Stuart Turnbull)

accrued_premium

If set to TRUE, the accrued premium will be taken into account in the calculation
of the premium leg value.

other parameters passed to methods

Value

An object of type SurvivalProbabilitiesCurve

an SurvivalProbabilities object

as_tibble.CreditCurve CreditCurve attributes as a data frame

Description

Create a tibble that contains the pillar point maturities in years (using the act/365 convention)
and the corresponding continuously compounded zero rates.

Usage
S3 method for class 'CreditCurve’
as_tibble(x, ...)

Arguments
X a CreditCurve object

other parameters that are not used by this methods

Value

a tibble with two columns named Years and Zero Hazard Rates.

as_tibble.ZeroCurve 7

See Also

tibble::tibble()

as_tibble.ZeroCurve ZeroCurve attributes as a data frame

Description

Create a tibble that contains the pillar point maturities in years (using the act/365 convention)
and the corresponding continuously compounded zero rates.

Usage

S3 method for class 'ZeroCurve'
as_tibble(x, ...)

Arguments
X a ZeroCurve object
other parameters that are not used by this methods
Value

a tibble with two columns named Years and Zeros.

See Also

tibble::tibble()

Examples

library(tibble)
zc <- build_zero_curve()
as_tibble(zc)

8 as_ZeroHazardRate

as_ZeroHazardRate Coerce to ZeroHazardRate

Description

You can coerce objects to the ZeroHazardRate class using this method.

Usage
as_ZeroHazardRate(x, ...)

S3 method for class 'SurvivalProbabilities'
as_ZeroHazardRate(x, compounding,
day_basis, ...)

S3 method for class 'ZeroHazardRate'
as_ZeroHazardRate(x, compounding = NULL,
day_basis = NULL, ...)

Arguments

X object to coerce
other parameters passed to methods
compounding a numeric vector representing the compounding frequency.

day_basis a character vector representing the day basis associated with the interest rate and
hazard rate(see fmdates: :year_frac())

Value

an ZeroHazardRate object

Examples

library("lubridate”)
as_ZeroHazardRate(SurvivalProbabilities(@.95, ymd(20130101), ymd(20140101), CDSSpec("Empty")),
compounding = 2, day_basis = "act/365")

build_vol_quotes

build_vol_quotes Build a VolQuotes object from an example data set

Description

This creates an object of class VolQuotes from the example data set volsurface.csv.

Usage
build_vol_quotes()

Value

a VolQuotes object from package built-in data

See Also

Other build vol object helpers: build_vol_surface

Examples

build_vol_quotes()

build_vol_surface Build a VolSurface from an example date set

Description

This creates a VolSurface object from the example data set volsurface.csv.

Usage

build_vol_surface()

Value

a VolSurface object using data from volsurface.csv

See Also

Other build vol object helpers: build_vol_quotes

Examples

build_vol_surface()

10 CashFlow

build_zero_curve Build a ZeroCurve from example data set

Description

This creates a ZeroCurve object from the example data set zerocurve. csv.

Usage

build_zero_curve(interpolation = NULL)

Arguments

interpolation an Interpolation object

Value

a ZeroCurve object using data from zerocurve.csv

Examples

build_zero_curve(LogDFInterpolation())

CashFlow Create a CashFlow

Description

This allows you to create a CashFlow object.

Usage

CashFlow(dates, monies)

Arguments
dates a Date vector with either the same length as monies or a vector of length one
that is recycled
monies a MultiCurrencyMoney object
Value

a CashFlow object that extends tibble: :tibble()

CashIndex 11

See Also

Other money functions: MultiCurrencyMoney, SingleCurrencyMoney, is.CashFlow, is.MultiCurrencyMoney,
is.SingleCurrencyMoney

Examples

CashFlow(as.Date("2017-11-15"),
MultiCurrencyMoney(list(SingleCurrencyMoney (1, AUD())))

)

CashIndex Cashindex class

Description

This can be used to represent ONIA like indices (e.g. AONIA, FedFunds) and extends the InterestRateIndex
class.

Usage

CashIndex(name, currency, spot_lag, calendar, day_basis, day_convention)

Arguments
name the name of the index as a string
currency the currency associated with the index as a Currency object
spot_lag the period between the index’s fixing and the start of the index’s term
calendar the calendar used to determine whether the index fixes on a given date as a
Calendar
day_basis the day basis associated with the index (e.g. "act/365")

day_convention the day convention associated with the index (e.g. "mf")

Value

an object of class CashIndex that inherits from Index

Examples

library(lubridate)

library(fmdates)

RBA cash overnight rate

CashIndex("AONIA", AUD(), days(@), c(AUSYCalendar()), "act/365", "f")

12 CDSCurve

CDSCurve Builds a CDSCurve

Description

This will allow you to create an instance of a CDS curve.

Usage

CDSCurve(reference_date, tenors, spreads, lgd, premium_frequency, specs)

Arguments

reference_date the curve’s reference date as a base::Date

tenors a numeric vector of pillar points time steps expressed in years

spreads a numeric vector of creadit default spreads expressed in decimals. Must be the
same length as tenors

lgd the loss given default associated with the curve as supplied by Markit and ex-

pressed as a decimal value

premium_frequency
represents the number of premiums payments per annum expressed as an integer.
Must be one of 1, 2, 4 or 12.

specs CDS curve specifications that inherits from CDSSpec ()

Value

An object of type CDSCurve

See Also

Other CDS curve helpers: CDSMarkitSpec, CDSSingleNameSpec, CDSSpec, SurvivalProbabilities,
ZeroHazardRate, is.CDSCurve, is.CDSSpec

Examples

curve_specs <- CDSMarkitSpec(

rating = "AAA",
region = "Japan”,
sector = "Utilities”
)
CDSCurve(

as.Date("2019-06-29"),

tenors = c(1, 3, 5, 7),

spreads = c(0.0050, 0.0070, 0.0090, 0.0110),
lgd = 0.6,

premium_frequency = 4,

specs = curve_specs

CDSMarkitSpec 13

CDSMarkitSpec Build a CDSMarkitSpec

Description
A subclass of CDSSpec(), only for Markit sector curves. Note that the paramter rank is fixed to be
"SNR", as per Markit’s methodology documents

Usage

CDSMarkitSpec(rating, region, sector)

Arguments
rating valid options are "AAA", "AA", "A", "BBB", "BB", "B", "CCC"
region valid options are "AsiaExJapan", "EastEurope", "Europe", "Japan", "LatinAmer-
ica", "NorthAmerica", "MiddleEast", "Oceania"
sector valid options are "BasicMaterials", "ConsumerGoods", "ConsumerServices",
"Energy", "Financials", "Government", "Healtcare", "Technology", "TeleCom",
"Utilities"
Value

An object of type CDSMarkitSpec

See Also
Other CDS curve helpers: CDSCurve, CDSSingleNameSpec, CDSSpec, SurvivalProbabilities,
ZeroHazardRate, is.CDSCurve, is.CDSSpec

Examples

CDSMarkitSpec(rating = "AAA", region = "Japan"”, sector = "Utilities")

CDSSingleNameSpec Builds a CDSSingleNameSpec

Description

A subclass of CDSSpec (), that implements specifications for single name CDS curves

Usage

CDSSingleNameSpec(rank, name)

14 CDSSpec

Arguments
rank Seniority of the reference debt. Must be one of the following options: "SNR"
for Senior, "SubTier3" for Subordinate Tier 3, "SubUpperTier2" for Subordinate
Upper Tier 2, "SubLowerTier2" for Subordinate Lower Tier 2 "SubTierl" for
Subordinate Tier 1. "Empty" rank can be used for a generic instance of the
class.
name Reference debt issuer. Must be a string.
Value

An object of type CDSSingleNameSpec

See Also
Other CDS curve helpers: CDSCurve, CDSMarkitSpec, CDSSpec, SurvivalProbabilities, ZeroHazardRate,
is.CDSCurve, is.CDSSpec

Examples

CDSSingleNameSpec(rank = "SNR", name = "Westpac")

CDSSpec Build a CDSSpec

Description

This class will enable you to specify CDS curves. It is used by SurvivalProbabilities() and

ZeroHazardRate().
Usage
CDSSpec(rank, ..., subclass = NULL)
Arguments
rank Seniority of the reference debt. Must be one of the following options: "SNR"

for Senior, "SubTier3" for Subordinate Tier 3, "SubUpperTier2" for Subordinate
Upper Tier 2, "SubLowerTier2" for Subordinate Lower Tier 2 "SubTierl" for
Subordinate Tier 1. "Empty" rank can be used for a generic instance of the
class.

parameters passed to other CDSSpec constructors

subclass the name of a CDSSpec subclass. Defaults to NULL

Value

Object of type CDSSpec

CreditCurve 15

See Also
Other CDS curve helpers: CDSCurve, CDSMarkitSpec, CDSSingleNameSpec, SurvivalProbabilities,
ZeroHazardRate, is.CDSCurve, is.CDSSpec

Examples

CDSSpec(rank = "SubTier3")

CreditCurve CreditCurve class

Description

A class that defines the bare bones of a credit curve pricing structure.

Usage

CreditCurve(survival_probabilities, reference_date, interpolation, specs)

Arguments

survival_probabilities
a SurvivalProbabilities object. These are converted to continuously com-
pounded zero coupon interest rates with an act/365 day basis for internal stor-
age purposes

reference_date aDate object
interpolation an Interpolation object

specs CDS curve specifications that inherits from CDSSpec ()

Details

A term structure of credit spread is a curve showing several credit spreads across different contract
lengths (2 month, 2 year, 20 year, etc...) for a similar debt contract. The curve shows the relation
between the (level of) crdit spread and the time to maturity, known as the "term", of the debt for a
given borrower in a given currency. When the effect of coupons on spreads are stripped away, one
has a zero-coupon credit curve.

The following interpolation schemes are supported by ZeroCurve: ConstantInterpolation,LinearInterpolation,
LogDFInterpolation and CubicInterpolation. Points outside the calibration region use con-
stant extrapolation on the zero hazard rate.

16 Currency

Value

a CreditCurve object curve_specs <- CDSMarkitSpec(rating = "AAA", region = "Japan", sec-
tor = "Utilities") zero_curve <- build_zero_curve() ref_date <- zero_curve$reference_date specs
<- CDSMarkitSpec(rating = "AAA", region = "Japan", sector = "Utilities") cds_curve <- CD-
SCurve(reference_date = ref_date, tenors = c(1, 3, 5, 7), spreads = ¢(0.0050, 0.0070, 0.0090,
0.0110), 1gd = .6, premium_frequency = 4, specs = curve_specs) sp <- as_SurvivalProbabilities(x
= cds_curve, zero_curve = zero_curve) CreditCurve(survival_probabilities = sp, reference_date
=ref_date, interpolation = Cubiclnterpolation(), specs = curve_specs)

See Also

Interpolation

Currency Build a Currency

Description

A currency refers to money in any form when in actual use or circulation, as a medium of ex-
change, especially circulating paper money. This package includes handy constructors for common
currencies.

Usage

Currency(iso, calendar)

Arguments
iso a three letter code representing the currency (see ISO 4217)
calendar a JointCalendar

Value

an object of class Currency

References

Currency. (2014, March 3). In Wikipedia

See Also

CurrencyConstructors

Examples

library("fmdates"”)
Currency("AUD", c(AUSYCalendar()))

https://en.wikipedia.org/wiki/ISO_4217
http://en.wikipedia.org/w/index.php?title=Currency&oldid=598027200

CurrencyConstructors

17

CurrencyConstructors

Handy Currency constructors

Description

These constructors use the following conventions:

Usage
AUD()

EUR()
GBP()
IPYQ)
NZD()
usD()
CHF ()
HKD ()

NOK ()

Details

See Also

Other constructors: CurrencyPairConstructors, iborindices, oniaindices

Creator
AUDQ)
EURQ)
GBP()
JPYQ)
NZD()
usDQ)
CHF ()
HKD()
NOK ()

Joint calendars
AUSYCalendar

EUTACalendar

GBLOCalendar

JPTOCalendar
NZAUCalendar, NZWECalendar
USNYCalendar

CHZHCalendar

HKHKCalendar

NOOSCalendar

18 CurrencyPairConstructors

Examples

AUDQ)

CurrencyPair CurrencyPair class

Description

Create an object of class CurrencyPair

Usage

CurrencyPair(base_ccy, quote_ccy, calendar = NULL)

Arguments
base_ccy a Currency object
quote_ccy a Currency object
calendar a JointCalendar object. Defaults to NULL which sets this to the joint calendar
of the two currencies and removes any USNY Calendar object to allow currency
pair methods to work correctly
Value

a CurrencyPair object

Examples

CurrencyPair(AUD(), USD())

CurrencyPairConstructors
Handy CurrencyPair constructors

Description

These handy CurrencyPair constructors use their single currency counterparts in the obvious fash-
ion.

CurrencyPairMethods

Usage
AUDUSD ()
EURUSD ()
NZDUSD ()
GBPUSD()
USDIPY ()
GBPJPY()
EURGBP ()
AUDNZD ()
EURCHF ()
USDCHF ()
USDHKD ()
EURNOK ()

USDNOK ()

See Also

Other constructors: CurrencyConstructors, iborindices, oniaindices

Examples

AUDUSD()

19

CurrencyPairMethods CurrencyPair methods

Description

A collection of methods related to currency pairs.

Usage

is_t1(x)

to_spot(dates, x)

20 CurrencyPairMethods

to_spot_next(dates, x)
to_forward(dates, tenor, x)
to_today(dates, x)
to_tomorrow(dates, x)

to_fx_value(dates, tenor, x)

invert(x)
Arguments
X a CurrencyPair object
dates a vector of dates from which forward dates are calculated
tenor the tenor of the value date which can be one of the following: "spot", "spot_next",
"today", "tomorrow" and the usual "forward" dates (e.g. lubridate: :months(3))
Details

The methods are summarised as follows:

* is_t1: Returns TRUE if the currency pair settles one good day after trade. This includes the
following currencies crossed with the USD: CAD, TRY, PHP, RUB, KZT and PKR

* to_spot: The spot dates are usually two non-NY good day after today. is_t1() identifies the
pairs whose spot dates are conventionally one good non-NYC day after today. In both cases,
if those dates are not a good NYC day, they are rolled to good NYC and non-NYC days using
the Following convention.

* to_spot_next: The spot next dates are one good NYC and non-NYC day after spot rolled
using the Following convention if necessary.

* to_forward: Forward dates are determined using the calendar’s shift () method rolling bad
NYC and non-NYC days using the Following convention. The end-to-end convention applies.

* to_today: Today is simply dates which are good NYC and non-NYC days. Otherwise today
is undefined and returns NA.

* to_tomorrow: Tomorrow is one good NYC and non-NYC day except where that is on or after
spot. In that case, is is undefined and returns NA.

* to_value: Determine common value dates. The supported value date tenors are: "spot",

non non

"spot_next", "today", "tomorrow" and the usual "forward" dates (e.g. lubridate: :months(3)).
* invert: Inverts the currency pair and returns new CurrencyPair object.

e is.CurrencyPair: Returns TRUE if x inherits from the CurrencyPair class; otherwise FALSE

DiscountFactor 21

Examples

library(lubridate)

is_t1(AUDUSD())

dts <- lubridate::ymd(20170101) + lubridate::days(@:30)
to_spot(dts, AUDUSD())

to_spot_next(dts, AUDUSD())

to_today(dts, AUDUSD())

to_tomorrow(dts, AUDUSD())

to_fx_value(dts, months(3), AUDUSD())

DiscountFactor DiscountFactor class

Description

The DiscountFactor class is designed to represent discount factors. Checks whether: d1 is less
than d2, elementwise, and that both are Date vectors; and value is greater than zero and is a numeric
vector. An error is thrown if any of these are not true. The elements of each argument are recycled
such that each resulting vectors have equivalent lengths.

Usage

DiscountFactor(value, d1, d2)

Arguments
value a numeric vector containing discount factor values. Must be greater than zero
di a Date vector containing the as of date
d2 a Date vector containing the date to which the discount factor applies

Value

a (vectorised) DiscountFactor object

Examples

library("lubridate”)
df <- DiscountFactor(c(@.95, 0.94, 0.93), ymd(20130101), ymd(20140101, 20150101))
as_InterestRate(df, 2, "act/365")

22

fmbasics

DiscountFactor-operators

DiscountFactor operations

Description

A number of different operations can be performed on or with DiscountFactor objects. Methods
have been defined for base package generic operations including arithmetic and comparison.

Details

The operations are:

c: concatenates a vector of DiscountFactor objects

[: extract parts of a DiscountFactor vector

[<-: replace parts of a DiscountFactor vector

rep: repeat a DiscountFactor object

length: determines the length of a DiscountFactor vector

*: multiplication of DiscountFactor objects. The end date of the first discount factor object
must be equivalent to the start date of the second (or vice versa). Arguments are recycled as
necessary.

/: division of DiscountFactor objects. The start date date of both arguments must be the
same. Arguments are recycled as necessary.

* <, >, <=, >=, == |=: these operate in the standard way on the discount_factor field.
fmbasics fmbasics: Financial Market Building Blocks
Description

Implements basic financial market objects like currencies, currency pairs, interest rates and interest
rate indices. You will be able to use Benchmark instances of these objects which have been defined
using their most common conventions or those defined by International Swap Dealer Association
legal documentation.

IborIndex 23

IborIndex IborIndex class

Description

This can be used to represent IBOR like indices (e.g. LIBOR, BBSW, CDOR) and extends the
Index class.

Usage

IborIndex(name, currency, tenor, spot_lag, calendar, day_basis,
day_convention, is_eom)

Arguments
name the name of the index as a string
currency the currency associated with the index as a Currency object
tenor the term of the index as a period
spot_lag the period between the index’s fixing and the start of the index’s term
calendar the calendar used to determine whether the index fixes on a given date as a
Calendar
day_basis the day basis associated with the index (e.g. "act/365")

day_convention the day convention associated with the index (e.g. "mf")

is_eom a flag indicating whether or not the maturity date of the index is subject to the
end-to-end convention.

Value

an object of class IborIndex that inherits from Index

Examples

library(lubridate)

library(fmdates)

3m AUD BBSW

IborIndex("BBSW”, AUD(), months(3), days(@), c(AUSYCalendar()),
"act/365", "ms", FALSE)

24

iborindices

iborindices Standard IBOR

Description

These functions create commonly used IBOR indices with standard market conventions.

Usage
AUDBBSW(tenor)

AUDBBSW1b(tenor)
EURIBOR(tenor)
GBPLIBOR(tenor)
JPYLIBOR(tenor)
JPYTIBOR(tenor)
NZDBKBM(tenor)
USDLIBOR(tenor)
CHFLIBOR(tenor)
HKDHIBOR(tenor)

NOKNIBOR(tenor)

Arguments

tenor the tenor of the IBOR index (e.g. months(3))

Details

The key conventions are tabulated below.

Creator Spot lag (days)
AUDBBSW() 0
EURIBOR() 2
GBPLIBOR() O
JPYLIBOR() 2
JPYTIBOR() 2
NZDBKBM() 0
USDLIBOR() 2

Fixing calendars
AUSYCalendar

EUTACalendar

GBLOCalendar

GBLOCalendar

JPTOCalendar

NZWECalendar, NZAUCalendar
USNYCalendar, GBLOCalendar

Day basis
act/365
act/360
act/365
act/360
act/365
act/365
act/360

Day convention EOM

ms
mf
mf
mf
mf
mf
mf

FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
TRUE

indexcheckers 25

CHFLIBOR() 2 GBLOCalendar act/360 mf
HKDHIBOR() 0 HKHKCalendar act/365 mf
NOKNIBOR() 2 NOOSCalendar act/360 mf

There are some nuances to this. Sub-1m LIBOR and TIBOR spot lags are zero days (excepting
spot-next rates) and use the following day convention and the overnight USDLIBOR index uses
both USNYCalendar and GBLOCalendar calendars.

References
BBSW EURIBOR ICE LIBOR BBA LIBOR TIBOR NZD BKBM OpenGamma Interest Rate In-
struments and Market Conventions Guide HKD HIBOR

See Also

Other constructors: CurrencyConstructors, CurrencyPairConstructors, oniaindices

indexcheckers Index class checkers

Description

Index class checkers
Usage

is.Index(x)

is.IborIndex(x)

is.CashIndex(x)

Arguments

X an object

Value

TRUE if object inherits from tested class

Examples

is.Index(AONIA())
is.CashIndex(AONIA())
is.IborIndex(AONIA())

TRUE
FALSE
FALSE

http://www.asx.com.au/documents/products/bbsw-conventions.pdf
http://www.emmi-benchmarks.eu/assets/files/Euribor_tech_features.pdf
https://www.theice.com/iba/libor
http://www.bbalibor.com/technical-aspects/fixing-value-and-maturity
http://www.jbatibor.or.jp/english/public/pdf/JBA%20TIBOR%20Operational%20RulesE.pdf
http://www.nzfma.org/includes/download.aspx?ID=130053
http://opnga.ma/conventions
http://opnga.ma/conventions
https://bank.hangseng.com/1/2/rates/hibor

26 indexshifters

indexshifters Index date shifters

Description

A collection of methods that shift dates according to index conventions.
Usage

to_reset(dates, index)

to_value(dates, index)

to_maturity(dates, index)

Default S3 method:
to_reset(dates, index)

Default S3 method:
to_value(dates, index)

Default S3 method:
to_maturity(dates, index)

Arguments

dates a vector of dates to shift

index an instance of an object that inherits from the Index class.
Details

The following describes the default methods. to_reset() treats the input dates as value dates and
shifts these to the corresponding reset or fixing dates using the index’s spot lag; to_value() treats
the input dates as reset or fixing dates and shifts them to the corresponding value dates using the
index’s spot lag; and to_maturity() treats the input dates as value dates and shifts these to the
index’s corresponding maturity date using the index’s tenor.

Value

a vector of shifted dates

Examples

library(lubridate)

to_reset(ymd(20170101) + days(@:30), AUDBBSW(months(3)))
to_value(ymd(20170101) + days(@:30), AUDBBSW(months(3)))
to_maturity(ymd(20170101) + days(@:30), AUDBBSW(months(3)))

InterestRate 27

InterestRate InterestRate class

Description

The InterestRate class is designed to represent interest rates. Checks whether: the day_basis is
valid; and the compounding is valid. An error is thrown if any of these are not true. The elements
of each argument are recycled such that each resulting vectors have equivalent lengths.

Usage

InterestRate(value, compounding, day_basis)

Arguments
value a numeric vector containing interest rate values (as decimals).
compounding a numeric vector representing the compounding frequency.
day_basis a character vector representing the day basis associated with the interest rate
(see fmdates: :year_frac())
Value

a vectorised InterestRate object

Examples

library("lubridate”)

InterestRate(c(0.04, 0.05), c(2, 4), 'act/365')

rate <- InterestRate(@.04, 2, 'act/365')
as_DiscountFactor(rate, ymd(20140101), ymd(20150101))
as_InterestRate(rate, compounding = 4, day_basis = 'act/365')

InterestRate-operators
InterestRate operations

Description

A number of different operations can be performed on or with InterestRate objects. Methods
have been defined for base package generic operations including arithmetic and comparison.

28

Details

interpolate

The operations are:

c: concatenates a vector of InterestRate objects

[: extract parts of a InterestRate vector

[<-: replace parts of a InterestRate vector

rep: repeat a InterestRate object

length: determines the length of a InterestRate vector

+, —: addition/subtraction of InterestRate objects. Where two InterestRate objects are
added/subtracted, the second is first converted to have the same compounding and day basis
frequency as the first. Numeric values can be added/subtracted to/from an InterestRate
object by performing the operation directly on the rate field. Arguments are recycled as
necessary.

*: multiplication of InterestRate objects. Where two InterestRate objects are multiplied,
the second is first converted to have the same compounding and day basis frequency as the first.
Numeric values can be multiplied to an InterestRate object by performing the operation
directly on the rate field. Arguments are recycled as necessary.

/: division of InterestRate objects. Where two InterestRate objects are divided, the
second is first converted to have the same compounding and day basis frequency as the first.
Numeric values can divide an InterestRate object by performing the operation directly on
the rate field. Arguments are recycled as necessary.

<, >, <=, >=, ==, |=: these operate in the standard way on the rate field, and if necessary,
the second InterestRate object is converted to have the same compounding and day basis
frequency as the first.

interpolate Interpolate values from an object

Description

Interpolate values from an object

Usage
interpolate(x, ...)
Arguments
X the object to interpolate.
other parameters that defines how to interpolate the object
Value

an interpolated value or set of values

interpolate.CreditCurve 29

See Also

Other interpolate functions: interpolate.CreditCurve, interpolate.VolSurface, interpolate.ZeroCurve,
interpolate_dfs.CreditCurve, interpolate_zeros.CreditCurve

interpolate.CreditCurve
Interpolate a CreditCurve

Description

There are two key interpolation schemes available in the stats package: constant and linear
interpolation via stats: :approxfun() and spline interpolation via stats::splinefun(). The
interpolate() method is a simple wrapper around these methods that are useful for the purposes
of interpolation financial market objects like credit curves.

Usage
S3 method for class 'CreditCurve'
interpolate(x, at, ...)
Arguments
X a CreditCurve object
at a non-negative numeric vector representing the years at which to interpolate the

Credit curve

unused in this method

Value

a numeric vector of zero rates (continuously compounded, act/365)

See Also

Other interpolate functions: interpolate.VolSurface, interpolate.ZeroCurve, interpolate_dfs.CreditCurve,
interpolate_zeros.CreditCurve, interpolate

Examples

zc <- build_zero_curve(LogDFInterpolation())
interpolate(zc, c(1.5, 3))

30 interpolate. VolSurface

interpolate.VolSurface
Interpolate a VolSurface object.

Description

This method is used to interpolate a VolSurface object at multiple points of the plane. The inter-
polation depends on the type of the surface, if the vols are given by strikes, delta, moneyness.

Usage
S3 method for class 'VolSurface'
interpolate(x, at, ...)
Arguments
X object of class VolSurface to be interpolated.
at indicates the coordinates at which the interpolation is performed. at should be

given as a tibble::tibble() with two column names named maturity and
smile. e.g. list(maturity = c(1, 2), smile = c(72, 92)).

unused in this model.

Value

numeric vector with length equal to the number of rows of at.

See Also

Other interpolate functions: interpolate.CreditCurve, interpolate.ZeroCurve, interpolate_dfs.CreditCurve,
interpolate_zeros.CreditCurve, interpolate

Examples

x <- build_vol_surface()

at <- tibble::tibble(
maturity = c(as.Date("2020-03-31"), as.Date("2021-03-31")),
smile = c(40, 80)

)

interpolate(x, at)

interpolate.ZeroCurve 31

interpolate.ZeroCurve Interpolate a ZeroCurve

Description

There are two key interpolation schemes available in the stats package: constant and linear
interpolation via stats: :approxfun() and spline interpolation via stats::splinefun(). The
interpolate() method is a simple wrapper around these methods that are useful for the purposes
of interpolation financial market objects like zero coupon interest rate curves.

Usage
S3 method for class 'ZeroCurve'
interpolate(x, at, ...)
Arguments
X a ZeroCurve object
at a non-negative numeric vector representing the years at which to interpolate the
ZEro curve

unused in this method

Value

a numeric vector of zero rates (continuously compounded, act/365)

See Also

Other interpolate functions: interpolate.CreditCurve, interpolate.VolSurface, interpolate_dfs.CreditCurve,
interpolate_zeros.CreditCurve, interpolate

Examples

zc <- build_zero_curve(LogDFInterpolation())
interpolate(zc, c(1.5, 3))

interpolate_dfs.CreditCurve
Interpolate forward rates and discount factors

Description

This interpolates forward rates and forward discount factors from either a ZeroCurve or some other
object that contains such an object.

32 interpolate_zeros.CreditCurve

Usage

S3 method for class 'CreditCurve'
interpolate_dfs(x, from, to, ...)

S3 method for class 'CreditCurve'

interpolate_fwds(x, from, to, ...)
interpolate_dfs(x, from, to, ...)
interpolate_fwds(x, from, to, ...)

S3 method for class 'ZeroCurve'
interpolate_fwds(x, from, to, ...)

S3 method for class 'ZeroCurve'

interpolate_dfs(x, from, to, ...)
Arguments
X the object to interpolate
from a Date vector representing the start of the forward period
to a Date vector representing the end of the forward period

further arguments passed to specific methods

Value
interpolate_df's returns a DiscountFactor object of forward discount factors while interpolate_fwds
returns an InterestRate object of interpolated simply compounded forward rates.

See Also

Other interpolate functions: interpolate.CreditCurve, interpolate.VolSurface, interpolate.ZeroCurve,
interpolate_zeros.CreditCurve, interpolate

interpolate_zeros.CreditCurve
Interpolate zeros

Description

This interpolates zero rates from either a ZeroCurve or some other object that contains such an
object.

Interpolation 33

Usage

S3 method for class 'CreditCurve'’
interpolate_zeros(x, at, compounding = NULL,
day_basis = NULL, ...)

interpolate_zeros(x, at, compounding = NULL, day_basis = NULL, ...)

S3 method for class 'ZeroCurve'

interpolate_zeros(x, at, compounding = NULL,
day_basis = NULL, ...)
Arguments
X the object to interpolate
at a Date vector representing the date at which to interpolate a value
compounding a valid compounding string. Defaults to NULL which uses the curve’s native
compounding basis
day_basis a valid day basis string. Defaults to NULL which uses the curve’s native day

basis.

further arguments passed to specific methods

Value

an InterestRate object of interpolated zero rates with the compounnding and day_basis requested.

See Also

Other interpolate functions: interpolate.CreditCurve, interpolate.VolSurface, interpolate.ZeroCurve,
interpolate_dfs.CreditCurve, interpolate

Interpolation Interpolation

Description

These are lightweight interpolation classes that are used to specify typical financial market interpo-
lation schemes. Their behaviour is dictated by the object in which they defined.

Usage

ConstantInterpolation()
LogDFInterpolation()

LinearInterpolation()

34 is.CashFlow

CubicInterpolation()

LinearCubicTimeVarInterpolation()

Value

an object that inherits from the Interpolation class.

Examples

ConstantInterpolation()

is.CashFlow Inherits from CashFlow

Description

Checks whether object inherits from CashFlow class

Usage

is.CashFlow(x)

Arguments

X an R object

Value

TRUE if x inherits from the CashFlow class; otherwise FALSE

See Also

Other money functions: CashFlow, MultiCurrencyMoney, SingleCurrencyMoney, is.MultiCurrencyMoney,
is.SingleCurrencyMoney

Examples

is.CashFlow(CashFlow(as.Date("2017-11-15"),
MultiCurrencyMoney(list(SingleCurrencyMoney(1, AUD())))))

1s.CDSCurve 35

is.CDSCurve Inherits from CDSCurve

Description

Checks whether object inherits from CDSCurve class

Usage

is.CDSCurve(x)

Arguments

X an R object

Value

TRUE if x inherits from the CDSCurve class; otherwise FALSE

See Also

Other CDS curve helpers: CDSCurve, CDSMarkitSpec, CDSSingleNameSpec, CDSSpec, SurvivalProbabilities,
ZeroHazardRate, is.CDSSpec

Examples

curve_specs <- CDSMarkitSpec(
rating = "AAA",
region = "Japan”,
sector = "Utilities”

)

cds_curve <- CDSCurve(
as.Date("2019-06-29"),
tenors = c(1, 3, 5, 7),
spreads = c(0.0050, 0.0070, 0.0090, 0.0110),
lgd = 0.6,
premium_frequency = 4,
specs = curve_specs

)

is.CDSCurve(cds_curve)

36 is.CreditCurve

is.CDSSpec Inherits from CDSSpec

Description

Checks whether object inherits from CDSSpec class

Usage
is.CDSSpec(x)

Arguments

X an R object

Value

TRUE if x inherits from the CDSSpec class; otherwise FALSE

See Also
Other CDS curve helpers: CDSCurve, CDSMarkitSpec, CDSSingleNameSpec, CDSSpec, SurvivalProbabilities,
ZeroHazardRate, is.CDSCurve

Examples

curve_specs <- CDSMarkitSpec(

rating = "AAA",
region = "Japan”,
sector = "Utilities”

)

is.CDSSpec(curve_specs)

is.CreditCurve Inherits from CreditCurve

Description

Checks whether object inherits from CreditCurve class

Usage

is.CreditCurve(x)

Arguments

X an R Object

is.Currency

Value

TRUE if x inherits from the CreditCurve class; otherwise FALSE

is.Currency Inherits from Currency

Description

Checks whether object inherits from Currency class

Usage

is.Currency(x)

Arguments

X an R object

Value

TRUE if x inherits from the Currency class; otherwise FALSE

Examples

is.Currency(AUD())

is.CurrencyPair Inherits from CurrencyPair class

Description

Inherits from CurrencyPair class

Usage

is.CurrencyPair(x)

Arguments

X an R object

Value

TRUE if x inherits from the CurrencyPair class; otherwise FALSE

Examples

is.CurrencyPair (AUDUSD())

38 is.InterestRate

is.DiscountFactor Inherits from DiscountFactor

Description

Checks whether object inherits from DiscountFactor class

Usage

is.DiscountFactor(x)

Arguments

X an R object

Value

TRUE if x inherits from the DiscountFactor class; otherwise FALSE

Examples

is.DiscountFactor(DiscountFactor(@.97, Sys.Date(), Sys.Date() + 30))

is.InterestRate Inherits from InterestRate

Description

Checks whether object inherits from InterestRate class

Usage

is.InterestRate(x)

Arguments

X an R object

Value

TRUE if x inherits from the InterestRate class; otherwise FALSE

Examples

is.InterestRate(InterestRate(0.04, 2, "act/365"))

is.Interpolation

is.Interpolation Check Interpolation class

Description

These methods check whether an interpolation is of a particular scheme.
Usage

is.Interpolation(x)

is.ConstantInterpolation(x)

is.LogDFInterpolation(x)

is.LinearInterpolation(x)

is.CubicInterpolation(x)

is.LinearCubicTimeVarInterpolation(x)

Arguments

X an object

Value

a logical flag

Examples

is.Interpolation(CubicInterpolation())
is.CubicInterpolation(CubicInterpolation())

is.MultiCurrencyMoney Inherits from MultiCurrencyMoney

Description

Checks whether object inherits from MultiCurrencyMoney class

Usage

is.MultiCurrencyMoney(x)

40 is.SingleCurrencyMoney

Arguments

X an R object

Value

TRUE if x inherits from the MultiCurrencyMoney class; otherwise FALSE

See Also
Other money functions: CashFlow, MultiCurrencyMoney, SingleCurrencyMoney, is.CashFlow,

is.SingleCurrencyMoney

Examples

is.MultiCurrencyMoney(MultiCurrencyMoney(list(SingleCurrencyMoney(1, AUD()))))

is.SingleCurrencyMoney
Inherits from SingleCurrencyMoney

Description

Checks whether object inherits from SingleCurrencyMoney class

Usage

is.SingleCurrencyMoney(x)

Arguments

X an R object

Value

TRUE if x inherits from the SingleCurrencyMoney class; otherwise FALSE

See Also
Other money functions: CashFlow, MultiCurrencyMoney, SingleCurrencyMoney, is.CashFlow,

is.MultiCurrencyMoney

Examples

is.SingleCurrencyMoney(SingleCurrencyMoney(1:5, AUD()))

is.SurvivalProbabilities 41

is.SurvivalProbabilities
Inherits from SurvivalProbabilities

Description

Checks whether object inherits from SurvivalProbabilities class

Usage

is.SurvivalProbabilities(x)

Arguments

X an R object

Value

TRUE if x inherits from the SurvivalProbabilities class; otherwise FALSE

Examples

is.SurvivalProbabilities(SurvivalProbabilities(0.97, Sys.Date(), Sys.Date() + 30, CDSSpec("Empty")))

is.VolQuotes Inherits from VolQuotes

Description

Checks whether the object inherits from VolQuotes class

Usage

is.VolQuotes(x)

Arguments

X an R object

Value

TRUE if x inherits from the VolQuotes class; otherwise FALSE

42 is.ZeroCurve

is.VolSurface Inherits from VolSurface

Description

Checks whether object inherits from VolSurface class

Usage

is.VolSurface(x)

Arguments

X an R object

Value

TRUE if x inherits from the VolSurface class; otherwise FALSE

is.ZeroCurve Inherits from ZeroCurve

Description

Checks whether object inherits from ZeroCurve class

Usage

is.ZeroCurve(x)

Arguments

X an R object

Value

TRUE if x inherits from the ZeroCurve class; otherwise FALSE

Examples

is.ZeroCurve(build_zero_curve())

is.ZeroHazardRate 43

is.ZeroHazardRate Inherits from ZeroHazardRate

Description

Checks whether object inherits from ZeroHazardRate class

Usage

is.ZeroHazardRate(x)

Arguments

X an R object

Value

TRUE if x inherits from the ZeroHazardRate class; otherwise FALSE

Examples

is.ZeroHazardRate(ZeroHazardRate(@.04, 2, "act/365", CDSSpec("Empty")))

iso.CurrencyPair Get ISO

Description

The default method assumes the ISO can be accessed as if it were an attribute with name iso (e.g.
x$iso). The method for CurrencyPair concatenates the ISOs of the constituent currencies (e.g.
iso(AUDUSD()) returns "AUDUSD") while the methods for CashIndex and IborIndex return the
ISO of the index’s currency.

Usage

S3 method for class 'CurrencyPair'
iso(x)

iso(x)

Default S3 method:
iso(x)

S3 method for class 'IborIndex'
iso(x)

S3 method for class 'CashIndex'
iso(x)

44 is_valid_compounding

Arguments

X object from which to extract an ISO

Value

a string of the ISO

Examples

library("lubridate”)
iso(AUD())
iso(AUDUSD())
iso(AUDBBSW(months(3)))
iso(AONIA())

is_valid_compounding Compounding frequencies

Description

A non-exported function that checks whether compounding values frequencies are supported.

Usage

is_valid_compounding(compounding)

Arguments

compounding a numeric vector representing the compounding frequency

Details

Valid compounding values are:

Value Frequency
-1 Simply, T-bill discounting
0 Simply
1 Annually
2 Semi-annually
3 Tri-annually
4 Quarterly
6 Bi-monthly
12 Monthly
24 Fortnightly
52 Weekly
365 Daily
Inf Continuously

MultiCurrencyMoney 45

Value

a flag (TRUE or FALSE) if all the supplied compounding frequencies are supported.

MultiCurrencyMoney MultiCurrencyMoney

Description

This class associates a vector of numeric values with a list of currencies. This can be useful for
example to store value of cash flows. Internally it represents this information as an extension to a
tibble. You are able to bind MultiCurrencyMoney objects by using rbind() (see example below).

Usage

MultiCurrencyMoney(monies)

Arguments

monies a list of SingleCurrencyMoney

Value

aMultiCurrencyMoney object that extends tibble: :tibble()

See Also

Other money functions: CashFlow, SingleCurrencyMoney, is.CashFlow, is.MultiCurrencyMoney,
is.SingleCurrencyMoney

Examples

mcm <- MultiCurrencyMoney(list(
SingleCurrencyMoney(1, AUD()),
SingleCurrencyMoney(2, USD())
)

rbind(mecm, mcm)

46 oniaindices

oniaindices Standard ONIA

Description

These functions create commonly used ONIA indices with standard market conventions.

Usage
AONIA(Q)

EONIA()
SONIA()
TONAR()
NZIONA()
FedFunds()
CHFTOIS()

HONIX ()

Details

The key conventions are tabulated below. All have a zero day spot lag excepting CHFTOIS which
has a one day lag (it is a tom-next rate, per 2006 ISDA definitions).

Creator Fixing calendars Day basis Day convention
AONIA() AUSY Calendar act/365 f
EONIA() EUTACalendar act/360 f
SONIA() GBLOCalendar act/365 f
TONAR() JPTOCalendar act/365 f
NZIONA() NZWECalendar, NZAUCalendar act/365 f
FedFunds() USNYCalendar act/360 f
CHFTOIS() CHZHCalendar act/360 f
HONIX() HKHKCalendar act/365 f

Note that for some ONIA indices, the overnight rate is not published until the following date (i.e. it
has publication lag of one day).
References

AONIA EONIA SONIA TONAR NZIONA FedFunds OpenGamma Interest Rate Instruments and
Market Conventions Guide

http://www.rba.gov.au/mkt-operations/resources/cash-rate-methodology/
http://www.emmi-benchmarks.eu/assets/files/Eonia%20Technical%20Features.pdf
https://www.wmba.org.uk/pages/index.cfm?page_id=31
https://www.boj.or.jp/en/statistics/market/short/mutan/index.htm/
http://rbnz.govt.nz/statistics/tables/b2/
http://www.federalreserve.gov/releases/H15/Current/#fn2
http://opnga.ma/conventions
http://opnga.ma/conventions

SingleCurrencyMoney 47

See Also

Other constructors: CurrencyConstructors, CurrencyPairConstructors, iborindices

SingleCurrencyMoney SingleCurrencyMoney

Description

This class associates a numeric vector with a currency. This is useful for example in representing
the value of a derivative. You can concatenate a set SingleCurrencyMoney objects and return a
MultiCurrencyMoney object (see example below)

Usage

SingleCurrencyMoney(value, currency)

Arguments
value a numeric vector of values
currency a single Currency object
Value

a SingleCurrencyMoney object

See Also

Other money functions: CashFlow, MultiCurrencyMoney, is.CashFlow, is.MultiCurrencyMoney,
is.SingleCurrencyMoney

Examples

SingleCurrencyMoney(1:5, AUD())
c(SingleCurrencyMoney(1, AUD()), SingleCurrencyMoney(100, USD()))

48 SurvivalProbabilities-operators

SurvivalProbabilities Builds a SurvivalProbabilitiesCurve

Description
This will allow you to create a survival probability curve. This will typically be bootstrapped from
a CDSCurve().

Usage

SurvivalProbabilities(values, d1, d2, specs)

Arguments
values a vector of survival probabilities corresponding to each time step in tenors.
di a Date vector containing the as of date
d2 a Date vector containing the date to which the survival probability applies
specs CDS curve specifications that inherits from CDSSpec ()

Value

returns an object of type SurvivalProbabilitiesCurve

See Also
Other CDS curve helpers: CDSCurve, CDSMarkitSpec, CDSSingleNameSpec, CDSSpec, ZeroHazardRate,
is.CDSCurve, is.CDSSpec

Examples

SurvivalProbabilities(0.97, Sys.Date(), Sys.Date() + 30, CDSSpec("Empty"))

SurvivalProbabilities-operators
SurvivalProbabilities operations

Description

A number of different operations can be performed on or with SurvivalProbabilities objects.
Methods have been defined for base package generic operations including arithmetic and compari-
son.

VolQuotes

Details

The operations are:

49

* c: concatenates a vector of SurvivalProbabilities objects

* [: extract parts of a SurvivalProbabilities vector

» [<-: replace parts of a SurvivalProbabilities vector

* rep: repeat a SurvivalProbabilities object

* length: determines the length of a SurvivalProbabilities vector

 *: multiplication of SurvivalProbabilities objects. The end date of the first SurvivalProb-
abilities object must be equivalent to the start date of the second (or vice versa). Arguments
are recycled as necessary.

* /: division of SurvivalProbabilities objects. The start date date of both arguments must
be the same. Arguments are recycled as necessary.

e <, >, <=, >=, ==, |=: these operate in the standard way on the discount_factor field.

VolQuotes

VolQuotes class

Description

VolQuotes class is designed to capture volatility data. Checks that the inputs are of the correct type
and stores the values in a tibble: :tibble().

Usage

VolQuotes(maturity, smile, value, reference_date, type, ticker)

Arguments

maturity

smile

value

reference_date

type

ticker

Date vector that captures the maturity pillar points.

numeric vector containing the values of the second dimension of the volatility
surface. The elements of the vector can either contain the strikes, the moneyness
or the delta. The input type is specified in type parameter. Must be the same
length as maturity

numeric vector containing the values of the volatilities. Should typically be
represented as a decimal value (e.g. 30% should be 0.3) and must be the same
length as maturity

Date that captures the as of date. This is stored as an attribute to the tibble and
can be extracted by calling attr(x, "reference_date")

string defining the second dimension of the VolSurface. The values accepted
in type parameters are "strike", "delta" and "moneyness. This is stored as an
attribute to the tibble and can be extracted by calling attr(x, "type")

string that represents the underlying asset. This is stored as an attribute to the
tibble and can be extracted by calling attr(x, "ticker™)

50 VolSurface

Value

object of class VolQuotes

See Also

VolSurface(), build_vol_quotes()

Examples

pillars <- seq(as.Date("2019-04-26") + 1, by = "month”, length.out = 3)
VolQuotes(

maturity = rep(pillars, 4),

smile = rep(seq(10, 20, length.out = 4), each = 3),

value = seq(1, 0.1, length.out = 12),

reference_date = as.Date("”2019-04-26"),

type = "strike",

ticker = "ABC.AX"

VolSurface VolSurface class

Description

The VolSurface class is designed to capture implied volatility information along with information
about how to interpolate an implied volatility between nodes.

Usage

VolSurface(vol_quotes, interpolation)

Arguments

vol_quotes object of class VolQuotes() containing the volatility data.

interpolation Interplation method, given as an object of class interpolation Interpolation().
At this time only LinearCubicTimeVarInterpolation() is supported. This is
a two-dimensional interpolator that uses linear interpolation in the time dimen-
sion and cubic splines in the smile dimension with the values interpolated being
the square of the implied volatilities. Return values are implied volatilies

Value

a VolSurface object

See Also

interpolate. VolSurface, build_vol_surface()

ZeroCurve 51

Examples

VolSurface(build_vol_quotes(), LinearCubicTimeVarInterpolation())

ZeroCurve ZeroCurve class

Description

A class that defines the bare bones of a zero-coupon yield curve pricing structure.

Usage

ZeroCurve(discount_factors, reference_date, interpolation)

Arguments

discount_factors
a DiscountFactor object. These are converted to continuously compounded
zero coupon interest rates with an act/365 day basis for internal storage pur-
poses

reference_date aDate object
interpolation an Interpolation object

Details

A term structure of interest rates (or yield curve) is a curve showing several yields or interest rates
across different contract lengths (2 month, 2 year, 20 year, etc...) for a similar debt contract. The
curve shows the relation between the (level of) interest rate (or cost of borrowing) and the time to
maturity, known as the "term", of the debt for a given borrower in a given currency. For example, the
U.S. dollar interest rates paid on U.S. Treasury securities for various maturities are closely watched
by many traders, and are commonly plotted on a graph. More formal mathematical descriptions
of this relation are often called the term structure of interest rates. When the effect of coupons on
yields are stripped away, one has a zero-coupon yield curve.

Value

a ZeroCurve object

Interpolation schemes
The following interpolation schemes are supported by ZeroCurve:

* ConstantInterpolation: constant interpolation on zero rates
* LinearInterpolation: linear interpolation on zero rates

* LogDFInterpolation: linear interpolation on log discount factors or constant on forward
rates

* CubicInterpolation: natural cubic spline on zero rates

Points outside the calibration region use constant extrapolation on zero rates.

52 ZeroHazardRate

See Also

Interpolation

Examples

build_zero_curve()

ZeroHazardRate Builds a ZeroHazardRate

Description
This will allow you to create a harzard rate curve. This will typically be bootstrapped or implied
from a CDSCurve() or SurvivalProbabilities().

Usage

ZeroHazardRate(values, compounding, day_basis, specs)

Arguments
values a numeric vector containing zero hazard rate values (as decimals).
compounding a numeric vector representing the compounding frequency.
day_basis a character vector representing the day basis associated with the interest rate and
hazard rate(see fmdates: :year_frac())
specs CDS curve specifications that inherits from CDSSpec ()
Value

returns an object of type hazard_rates

See Also

Other CDS curve helpers: CDSCurve, CDSMarkitSpec, CDSSingleNameSpec, CDSSpec, SurvivalProbabilities,
is.CDSCurve, is.CDSSpec

Examples

curve_specs <- CDSMarkitSpec(
rating = "AAA",
region = "Japan”,
sector = "Utilities”
)
ZeroHazardRate(values = c(0.04, 0.05), compounding = c(2, 4),
day_basis = ‘'act/365', specs = curve_specs)

ZeroHazardRate-operators 53

ZeroHazardRate-operators

ZeroHazardRate operations

Description

A number of different operations can be performed on or with ZeroHazardRate objects. Methods
have been defined for base package generic operations including arithmetic and comparison.

Details

The operations are:

c: concatenates a vector of ZeroHazardRate objects

[: extract parts of a ZeroHazardRate vector

[<-: replace parts of a ZeroHazardRate vector

rep: repeat a ZeroHazardRate object

length: determines the length of a ZeroHazardRate vector

+, —: addition/subtraction of ZeroHazardRate objects. Where two ZeroHazardRate objects
are added/subtracted, the second is first converted to have the same compounding and day ba-
sis frequency as the first. Numeric values can be added/subtracted to/from an ZeroHazardRate
object by performing the operation directly on the rate field. Arguments are recycled as nec-
essary.

*: multiplication of ZeroHazardRate objects. Where two ZeroHazardRate objects are mul-
tiplied, the second is first converted to have the same compounding and day basis frequency
as the first. Numeric values can be multiplied to an ZeroHazardRate object by performing
the operation directly on the rate field. Arguments are recycled as necessary.

/: division of ZeroHazardRate objects. Where two ZeroHazardRate objects are divided, the
second is first converted to have the same compounding and day basis frequency as the first.
Numeric values can divide an ZeroHazardRate object by performing the operation directly
on the rate field. Arguments are recycled as necessary.

<, >, <=, >=, ==, |=: these operate in the standard way on the rate field, and if necessary,
the second ZeroHazardRate object is converted to have the same compounding and day basis
frequency as the first.

Index

* CDS curve helpers
CDSCurve, 12
CDSMarkitSpec, 13
CDSSingleNameSpec, 13
CDSSpec, 14
is.CDSCurve, 35
is.CDSSpec, 36
SurvivalProbabilities, 48
ZeroHazardRate, 52

* build object helpers
build_zero_curve, 10

* build vol object helpers
build_vol_quotes, 9
build_vol_surface, 9

* constructors
CurrencyConstructors, 17
CurrencyPairConstructors, 18
iborindices, 24
oniaindices, 46

* interpolate functions
interpolate, 28
interpolate.CreditCurve, 29
interpolate.VolSurface, 30
interpolate.ZeroCurve, 31
interpolate_dfs.CreditCurve, 31
interpolate_zeros.CreditCurve, 32

+x money functions
CashFlow, 10
is.CashFlow, 34
is.MultiCurrencyMoney, 39
is.SingleCurrencyMoney, 40
MultiCurrencyMoney, 45
SingleCurrencyMoney, 47

AONIA (oniaindices), 46
as_DiscountFactor, 3
as_InterestRate, 4
as_SurvivalProbabilities, 5
as_SurvivalProbabilities.CDSCurve, 5
as_tibble.CreditCurve, 6

54

as_tibble.ZeroCurve, 7
as_ZeroHazardRate, 8

AUD (CurrencyConstructors), 17
AUDBBSW (iborindices), 24

AUDBBSW1b (iborindices), 24

AUDNZD (CurrencyPairConstructors), 18
AUDUSD (CurrencyPairConstructors), 18

base: :Date, 12
build_vol_quotes, 9,9
build_vol_quotes(), 50
build_vol_surface, 9,9
build_vol_surface(), 50
build_zero_curve, 10

Calendar, 11,23

CashFlow, 10, 34, 40, 45, 47

CashIndex, 11

CDSCurve, 12, 13-15, 35, 36, 48, 52

CDSCurve(), 48, 52

CDSMarkitSpec, 12, 13, 14, 15, 35, 36, 48, 52

CDSSingleNameSpec, 12, 13,13, 15, 35, 36,
48, 52

CDSSpec, 12-14, 14, 35, 36, 48, 52

CDSSpec(), 12, 13, 15,48, 52

CHF (CurrencyConstructors), 17

CHFLIBOR (iborindices), 24

CHFTOIS (oniaindices), 46

compounding, 4, 8, 27, 33, 52

compounding (is_valid_compounding), 44

ConstantInterpolation (Interpolation),
33

CreditCurve, 15

CubicInterpolation (Interpolation), 33

Currency, 11,16, 18, 23,47

CurrencyConstructors, 16, 17, 19, 25,47

CurrencyPair, 18

CurrencyPairConstructors, 17, 18, 25,47

CurrencyPairMethods, 19

INDEX

Date, 10, 32, 33

day basis, 33
DiscountFactor, 21, 22, 32, 51
DiscountFactor-operators, 22

EONIA (oniaindices), 46

EUR (CurrencyConstructors), 17

EURCHF (CurrencyPairConstructors), 18
EURGBP (CurrencyPairConstructors), 18
EURIBOR (iborindices), 24

EURNOK (CurrencyPairConstructors), 18
EURUSD (CurrencyPairConstructors), 18

FedFunds (oniaindices), 46
fmbasics, 22

fmbasics-package (fmbasics), 22
fmdates::year_frac(), 4,8, 27, 52

GBP (CurrencyConstructors), 17

GBPJPY (CurrencyPairConstructors), 18
GBPLIBOR (iborindices), 24

GBPUSD (CurrencyPairConstructors), 18

HKD (CurrencyConstructors), 17
HKDHIBOR (iborindices), 24
HONIX (oniaindices), 46

IborIndex, 23

iborindices, 17, 19, 24,47

indexcheckers, 25

indexshifters, 26

InterestRate, 27, 27, 32, 33

InterestRate-operators, 27

interpolate, 28, 29-33

interpolate.CreditCurve, 29, 29, 30-33

interpolate.VolSurface, 29, 30, 3/-33, 50

interpolate.ZeroCurve, 29, 30, 31, 32, 33

interpolate_dfs
(interpolate_dfs.CreditCurve),
31

interpolate_dfs.CreditCurve, 29-31, 31,
33

interpolate_fwds
(interpolate_dfs.CreditCurve),
31

interpolate_zeros
(interpolate_zeros.CreditCurve),
32

interpolate_zeros.CreditCurve, 29-32,
32

55

Interpolation, 15, 16, 33, 51, 52
Interpolation(), 50
invert (CurrencyPairMethods), 19
is.CashFlow, 11,34, 40, 45,47
is.CashIndex (indexcheckers), 25
is.CDSCurve, 12-15, 35, 36, 48, 52
is.CDSSpec, 12-15, 35, 36, 48, 52
is.ConstantInterpolation
(is.Interpolation), 39
is.CreditCurve, 36
is.CubicInterpolation
(is.Interpolation), 39
is.Currency, 37
is.CurrencyPair, 37
is.DiscountFactor, 38
is.IborIndex (indexcheckers), 25
is.Index (indexcheckers), 25
is.InterestRate, 38
is.Interpolation, 39
is.LinearCubicTimeVarInterpolation
(is.Interpolation), 39
is.LinearInterpolation
(is.Interpolation), 39
is.LogDFInterpolation
(is.Interpolation), 39
is.MultiCurrencyMoney, 11, 34, 39, 40, 45,
47
is.SingleCurrencyMoney, 11, 34, 40, 40, 45,
47
is.SurvivalProbabilities, 41
is.VolQuotes, 41
is.VolSurface, 42
is.ZeroCurve, 42
is.ZeroHazardRate, 43
is_t1 (CurrencyPairMethods), 19
is_valid_compounding, 44
iso (iso.CurrencyPair), 43
iso.CurrencyPair, 43

JointCalendar, 16, 18

JPY (CurrencyConstructors), 17
JPYLIBOR (iborindices), 24
JPYTIBOR (iborindices), 24

LinearCubicTimeVarInterpolation
(Interpolation), 33
LinearCubicTimeVarInterpolation(), 50
LinearInterpolation (Interpolation), 33
LogDFInterpolation (Interpolation), 33

56 INDEX

MultiCurrencyMoney, 10, 11, 34, 40, 45, 47 ZeroCurve, 10, 31, 32, 51
ZeroHazardRate, 12-15, 35, 36, 48,52, 53

NOK (CurrencyConstructors), 17 ZeroHazardRate(), /4

NOKNIBOR (iborindices), 24 ZeroHazardRate-operators, 53

NZD (CurrencyConstructors), 17
NZDBKBM (iborindices), 24

NZDUSD (CurrencyPairConstructors), 18
NZIONA (oniaindices), 46

oniaindices, 17, 19, 25, 46
period, 23
rbind(), 45

single currency counterparts, I8

SingleCurrencyMoney, 11, 34, 40, 45, 47

SONIA (oniaindices), 46

stats: :approxfun(), 29, 31

stats: :splinefun(), 29, 31

SurvivalProbabilities, 12-15, 35, 36, 48,
48, 52

SurvivalProbabilities(), 14, 52

SurvivalProbabilities-operators, 48

tibble, 45
tibble::tibble(), 7, 10, 30, 45, 49
to_forward (CurrencyPairMethods), 19
to_fx_value (CurrencyPairMethods), 19
to_maturity (indexshifters), 26
to_reset (indexshifters), 26

to_spot (CurrencyPairMethods), 19
to_spot_next (CurrencyPairMethods), 19
to_today (CurrencyPairMethods), 19
to_tomorrow (CurrencyPairMethods), 19
to_value (indexshifters), 26

TONAR (oniaindices), 46

USD (CurrencyConstructors), 17

USDCHF (CurrencyPairConstructors), 18
USDHKD (CurrencyPairConstructors), 18
USDJPY (CurrencyPairConstructors), 18
USDLIBOR (iborindices), 24

USDNOK (CurrencyPairConstructors), 18
USNYCalendar, 18

VolQuotes, 49

VolQuotes(), 50
VolSurface, 9, 50
VolSurface(), 50

	as_DiscountFactor
	as_InterestRate
	as_SurvivalProbabilities
	as_SurvivalProbabilities.CDSCurve
	as_tibble.CreditCurve
	as_tibble.ZeroCurve
	as_ZeroHazardRate
	build_vol_quotes
	build_vol_surface
	build_zero_curve
	CashFlow
	CashIndex
	CDSCurve
	CDSMarkitSpec
	CDSSingleNameSpec
	CDSSpec
	CreditCurve
	Currency
	CurrencyConstructors
	CurrencyPair
	CurrencyPairConstructors
	CurrencyPairMethods
	DiscountFactor
	DiscountFactor-operators
	fmbasics
	IborIndex
	iborindices
	indexcheckers
	indexshifters
	InterestRate
	InterestRate-operators
	interpolate
	interpolate.CreditCurve
	interpolate.VolSurface
	interpolate.ZeroCurve
	interpolate_dfs.CreditCurve
	interpolate_zeros.CreditCurve
	Interpolation
	is.CashFlow
	is.CDSCurve
	is.CDSSpec
	is.CreditCurve
	is.Currency
	is.CurrencyPair
	is.DiscountFactor
	is.InterestRate
	is.Interpolation
	is.MultiCurrencyMoney
	is.SingleCurrencyMoney
	is.SurvivalProbabilities
	is.VolQuotes
	is.VolSurface
	is.ZeroCurve
	is.ZeroHazardRate
	iso.CurrencyPair
	is_valid_compounding
	MultiCurrencyMoney
	oniaindices
	SingleCurrencyMoney
	SurvivalProbabilities
	SurvivalProbabilities-operators
	VolQuotes
	VolSurface
	ZeroCurve
	ZeroHazardRate
	ZeroHazardRate-operators
	Index

